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Systetmatic Encoding via Grijbner Bases for a 
Class of Algebraic-Geometric Goppa Codes 

Chris Heegard, Fellow, IEEE, John Little, and Keith Saints 

Abstract-Any linear code with a nontrivial automorphism has 
the structure of a module over a polynomial ring. The theory 
of Griihner bases for modules gives a compact description and 
implementation of a systematic encoder. We present examples of 
algebraic-geometric Goppa codes that can be encoded by these 
methods, including the one-point Hermitian codes. 

Index TermsSystematic encoding, algebraic-geometric Goppa 
codes, Grobner bases. 

I. INTR~D~JCTI~N 

L ET X be a smooth, irreducible projective algebraic curve 
defined over the finite field F,, and let D = Cy=“=, Pi and 

G be divisors made up of F,-rational points (places of degree 
1) of X, with the P, distinct and supp (D) n supp (G) = 0. 
Let L(G) be the vector space of rational functions on X with 
poles and zeroes bounded by G 

L(G) = {f E Fq(X)* I (f) + G L 0) u (0) 

We will concentrate on the Goppa codes of the form 

CL(D, G) = {(f(Pl), . . , f(Pn)) E F; I f E L(G)) . 

In this paper we will consider the problem of constructing 
systematic encoders for these codes. Basic linear algebra gives 
one immediate approach to this problem. Namely, given any 
collection of functions {fr , . . . , fh} in L(G), whose images 
in L(G)/L(G - D) form a basis for that space, we get a 
generator matrix for C,( D, G) of the form 

( 

fl(Pl) .‘. fl(Pn) 

MI : . . . ; . 

fdr,) ... fk(Pn) 1 

By row operations and, if necessary, column interchanges (i.e., 
relabeling the points of D), we can take M to the form 

M’ = [Ik ( B] (1) 

where I, is a k x k identity matrix, and B is some Ic x (n - k) 
matrix. Multiplying the row vector w E Ft on the right by 
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M’ gives a systematic encoding function E : Ft -+ Fy for 
CL(D, G). 

By the results of [l], every linear code can be obtained via 
Goppa’s construction (using appropriate X, D, G). So it is 
probably fruitless to ask for an improvement on this matrix- 
based method in general. However, we may still ask whether 
the presence of some extra algebraic structure on CL (D, G) 
might reduce the amount of information needed to describe the 
systematic encoder. In other words, we ask for a more compact 
description of the encoder than the collection of Ic . (n - k) 
entries of the submatrix B in M’ above. To be useful, such 
extra algebraic structure should be present in many good codes 
(i.e., ones with large minimum distance d relative to k and 
n). Naturally, we would also hope that the actual encoding 
operation could be performed efficiently using the compact 
representation. 

Our motivating example in this regard is the well-studied 
case of cyclic codes (see, e.g. [2, ch. 61). Let C be an 
ideal in the ring F, [z]/(z” - 1). Then, as is well known, 
C can be generated by (the coset of) a single manic poly- 
nomial g(z) ) 9 - 1. Moreover, a systematic encoder can 
be constructed using just the information contained in g(z) 
and the polynomial division algorithm. Namely, if g(x) = 
2T+U,-15’-1 +...+aa,wherek=dim(C)=n-r,wemay 
take as information symbols the coefficients of Y-‘, . . . , zr. 
Forming any linear combination 

p(z) = C,-1d--l + . . + c,IcT 

and computing the remainder p(x) on division by g(z), we 
find that C(Z) = p(z) - p(x) is a multiple of g(x), i.e., is a 
codeword. Furthermore, since p(x) is a linear combination of 
zT-l 

,“‘> x,1, C(Z) contains the same Y-r,. . , Y terms as 
p(x). Hence, we have a systematic encoder for C. 

To get something similar, we will assume that the code 
CL(D, G) has a nontrivial automorphism. In the examples we 
present, the automorphism of the code we use will be induced 
by an F,-rational automorphism o of the curve X fixing the 
divisors G and D, and inducing a nontrivial permutation of the 
points of D, though this is not necessary for our approach. It is 
well-known-see, e.g., [3, sec. VII.3.3]-that if we have such 
a automorphism (T E Aut (X), the mapping f H f o 0-l 
takes the vector subspace L(G) c F4(X) to itself, and 
hence induces an automorphism of the code CL (D, G). In 
fact, by considering the orbit decomposition of the entries 
of the codewords under the action of the cyclic subgroup H 
generated by the automorphism of the code, we can see that 
the codewords of such a code consist of several “blocks” (one 
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per orbit) each of which is permuted cyclically. Codes of this 
form have properties very similar to cyclic codes, and can be 
systematically encoded in a fashion that parallels the method 
described above for the cyclic case to a striking degree. 

There are two main reasons we believe that this line of 
thought is interesting. First, it applies directly to many good 
codes. In order for Goppa’s construction to yield good codes 
from a curve X of genus g > 0, X must have many F,- 
rational points. But curves with many F,-rational points tend 
to be special in other ways too. In particular, they tend to 
have many automorphisms. 

To give one example, consider the much-studied Hermitian 
curve X, over the field F,z, given by the affine equation 

p+l = ym+y 

(see [3]-[5]). X, has a single point Q (rational over F,z) at 
infinity, and m3 other F,z-rational points Pi, i = 1, . ’ . , m3. 
As is well known, X, has the maximum possible number of 
F,z -rational points for a curve of genus g = m(m - 1)/2. 
Write Q for a generator of the multiplicative group Fkz. Then 
X, always has an automorphism of the form 

{ 
x H ax 

0: 
YHQl m+1 Y. (2) 

The automorphism a fixes Q, and permutes the other F,z- 
rational points. (Of course, X, has many other automorphisms 
as well; this particular CT is interesting because it has order 
m2 - 1, quite large. Hence the number of orbits will be small, 
and their lengths will be large.) Hence, taking G = a&, and 

l&Pi 
i=l 

we are in the situation described above. The automorphism a 
induces an automorphism of each of the codes CL@, a&) on 
the Hermitian curve X,. Other curves with automorphisms 
that can be exploited in the same way include, but are 
not limited to, the family of curves with many F,-rational 
points considered by Hansen and Stichtenoth in [7], the Klein 
quartic [6], the modular curves X,(e) considered by Tsfasman, 
Vladuf, and Zink in their construction of long codes exceeding 
the Gilbert-Varshamov bound [8], any elliptic or hyperelliptic 
curve, and so forth. 

Second, there is an extra algebraic structure on the codes 
CL(D, G) in this situation. Writing the entries in each cycli- 
cally permuted block as a polynomial in a variable t, we 
will show that C = CL(D, G) has the structure of a finitely 
generated module over the ring F, [t], where multiplication by 
t acts as a cyclic permutation on each block. The dual code 

Cn(o,G) = {(cl,... , CT&) I 2  Cif(Pi) = 0, 
i=l 

for all f E L(G)} 
= {(Resp,(w), . . . ,Rev_(w)) I w E fl(G - D)) 

([3, sec. VII.11) also has the structure of a F,[t]-module. 
To C we can associate a submodule ?? of the free module 

F, kl’, where T  is the number of orbits of the points of 

D under the action of the cyclic group of automorphisms 
generated by 0. The theory of Griibner bases for modules 
over polynomial rings ([9]) now provides both a convenient 
language for specifying, and a powerful constructive way to 
implement the desired compact representation of a systematic 
encoder. We  summarize our encoding algorithm as follows. 
(See Subsection II-C below for a more precise description.) 
Select and fix some monomial order on terms in the free 
module F, [t]‘. Then 

1) The module ?? has a Griibner basis 6 of size equal 
to T  (the number of orbits), which can be computed 
using, e.g., Buchberger’s algorithm. There are also much 
more efficient algorithms for computing Grobner bases 
in special cases. For Hermitian codes, see our paper [lo]. 

2) As information positions for the code we can take a 
certain subset of the collection of nonstandard monomi- 
als for C (that is, those monomials appearing as leading 
terms of some element of ??). The parity checks are then 
the standard monomials. 

3) Forming any linear combination w of the nonstandard 
monomials and applying division by the Grobner basis 
S, we reduce to the remainder g8 (this contains only 
standard terms). Then 

E(w) =w-GG EC 

gives the systematic encoder. 
4) The information needed to describe G and hence the 

encoder is a collection of at most T. (n - k) coefficients; 
this is usually significantly smaller than the number 
k . (n - k) of coefficients in the right-hand block B 
of the row-reduced generator matrix in (1). 

This yields an encoder which can be compactly represented. 
Moreover, the computation of the remainder %  g takes no more 
work than computing the parity checks directly from B in (1). 
We  remark that very similar ideas can be used to generate 
systematic encoders for the m-dimensional extended cyclic 
codes, which can be viewed as F,[tl, . . . , t,]-modules (see 
[ 1  l] and [ 121 for the case of m-dimensional cyclic codes). 

It is, of course, also true that the codes we consider can be 
viewed as modules over the group algebra of the full automor- 
phism group of the code. However, when this automorphism 
group is nonabelian, the group algebra is a noncommutative 
ring. Grbbner bases for modules over rings of polynomials 
in noncommuting variables could conceivably be applied to 
the same effect. In the cases we have considered, however, 
there seems to be little advantage to this. Even though we are 
not using all of the symmetries of the codewords, restricting 
to cyclic groups of automorphisms lets us apply some very 
powerful, yet relatively simple algebraic machinery. 

The rest of the paper is organized as follows. In Section 
II we collect all the theoretical results on automorphisms of 
curves and the induced automorphisms of Goppa codes that 
we will need, and we establish the existence of the module 
structure described above. Finally, a  more precise statement 
of the encoding algorithm is given. Section III is devoted 
to several detailed examples, illustrating how this encoding 
method works in practice. 
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II. THEORETICAL Rmu~Ts 

A. Module Structures on Certain Goppa Codes. 

We  begin by describing some useful module structures on 
certain Goppa codes. Most of the cases we will consider come 
from the following situation. 

Let X be an irreducible, smooth projective algebraic curve 
defined over F,, and let c be an F,-rational automorphism 
of X. Then 0 permutes the points of X rational over F, (or 
equivalently, the places of degree 1 of the function field of X), 
and hence can be extended to act on divisors on X consisting 
of F,-rational points. Suppose that: 

1) 

2) 

The curve X has an F,-rational automorphism g that 
fixes two divisors D, G on X consisting of F,-rational 
points and with disjoint supports. 
The automorphism cr induces a nontrivial permutation 
of the points of D. (This will be true automatically, for 
instance, if the degree of D is sufficiently large with 
respect to the genus of X.) 

We  then have the following standard fact. 
(ZZ.A.l) Lemma: The automorphism (T induces a nontrivial 

automorphism 

The orbits 0: and 0; have 12 elements each, while 0; 
has three elements. By (II.A.2), we get a second, distinct 
decomposition of the codewords of CL(D, a&) into cyclically 
permuted blocks. 

0.(f(Pl), . . + ,f(Pn))=((fOa-l)(Pl),...,(f o~-‘)P?J> 
= (P(~-lPm~~~, f(~-lR))) 

(3) 
of the Goppa code CL(D, G) constructed from X. 

Proof: (see, e.g., [3, sec. VII.3.31). n  
An immediate corollary of (3) above is the following 

symmetry of the codewords of CL (D, G). 
(ZZ.A.2) Corollary: Let H be the cyclic subgroup of 

Aut (X) generated by (T, and let 

We  next give a more precise description of the F, [t]-module 
structure on CL (D, G) that is induced by the action of (T given 
in (3). The basic idea is very simple: multiplication by t in this 
module will mean applying the automorphism g of the code. 
We  note that CL(D, G) codes can also have automorpliisms 
that are not induced by automorphisms of the curve. The same 
construction can be applied in those cases as well. 

be the decomposition of the support of D into disjoint orbits 
under the action of H. Then the entries of codewords cor- 
responding to the points in each Oi are permuted cyclically 
by (T. 

A convenient way to describe this F,[t]-module structure 
is as follows. We  may relabel the points of D as Pi,j, where 
i = l,... , T, and for each given i, j runs from 0 to 10; 1 - 1. 
Pick any one point pi,0 E O;, and enumerate the points in the 
ith orbit as Pi,j = c+(Pq). We  have P;,l~,l = PQ. Similarly, 
by convention we will write Pi,-1 = ovl(Pio) = P~,Io,I-~. 
Rearranging the components, we may represent the codewords 
as r-tuples of polynomials in one variable: 

(ZZ.A.3) Examples: Consider the Hermitian curve Xs over 
the field Fg, given by the affine equation x4 = y3 + y, as in 
the introduction. Taking m  = 3 in the general form (2) above, 
we obtain an automorphism 0 fixing the point Q at infinity, 
and the divisor 

(hi(t), . . . > b(t)) (4) 

where 

D=EPi 
i=l 

lO,I-1 
h;(t) = c f(Pi,j)d 

j=o 
(5) 

and f E L(G). 
formed from the 27 affine Fs-rational points. We  represent Fg The most direct way to incorporate the cyclic permutations 
as F3[4/(cx2 + Q - 1). Then, under the action of H = (cJ), of the entries is to view the r-tuples (4) as elements of the 
supp (D) decomposes into five distinct orbits F,[t]-module 

01 = O((1, J>>, 02 = O((1, a5)>, 03 = O((1, a4)), 

04 = O((O, a2>>, 05 = {(O,O)}. M = 6 Fq[t],(tiozl - 1) . (6) 
i=l 

The orbits 01, 02, and 03 have eight elements each, 04 has 
two elements, and 0s is a singleton. (By the general theory 
of group actions, the number of elements in an orbit is the 
number of cosets of the subgroup of H fixing one element 

of the orbit-hence the number of elements in each orbit is 
a divisor of the order of the cyclic group H, 8 in this case.) 
By the Corollary, the entries in any of the codewords of a 
Ch(D, a&) code on this curve decompose into five “blocks” 
according to these orbits, each of which is cyclically permuted 
by c. 

In this case (and in all others where m  is prime), X, has 
automorphisms of order greater than m2 - 1  as well. Consider 

It is easy to check that T  is an automorphism of X3, of order 
12. 7 also fixes the divisors D and G. Under the action of 
k’ = (T), supp (D) decomposes into three orbits 

0: = 0((1,2)), 0; = O((a, l)), 0; = O((O,O)). 

The collection C of r-tuples obtained from the words of the 
code CL(D, G) is closed under sums. Furthermore, multipli- 
cation of an r-tuple of polynomials as in (4) by t has the 
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following effect: 

IO,‘-1 

t. f&(t) = c f(P&+l 
j=o 

p-1 
E C f(pi,j-l)tj mod(tloZi - 1) (7) 

j=o 

w-1 

= c f(cJ-l(Pi,j))tj. 
j=o 

Comparing with (3) above, we see that multiplying an element 
of C by t is the same as applying the automorphism of the 
code induced by 0. Hence C is closed under multiplication by 
t, and we have the following consequence of our observations. 

(ZZ.A.4) Proposition: Let C be the F,-vector subspace of 
the module M  in (6) formed by the codewords of the code 
Ch(D, G). Then C is a F,[t]-submodule of M  under the 
component-wise multiplication given in (7). 

(ZZ.A.5) Remark: By the structure theorem for modules over 
a principal ideal domain (see, e.g., [13, ch. 3]), it follows 
that C is isomorphic to a direct sum of cyclic F, [t]-modules. 
However, that algebraic decomposition does not coincide with 
the cyclic block decomposition of the codewords discussed 
above. 

(ZZ.A.6) Alternate Description: Consider the F,[t]-sub- 
module ?? of the free module F4[tlr generated by the 
codewords of CL(D,G) and the 4; = (tlO~’ - l)ei, where 
i= I,... , T, and e; is the ith standard basis vector in F4[t]‘. 
In other words, ?? is the inverse image n-r(C) under the 
obvious surjection 

F,[t]‘A $ FJt]/(t’O, - 1) . 
i=l 

It is in this sense that CL(D, G) can be associated with a 
submodule of a free module over F, [t], so that the standard 
theory of Grobner bases for modules over a polynomial ring 
may be applied. 

(ZZ.A. 7) Remark: For completeness, we mention that every- 
thing we have said above for the Goppa code CL(D, G) also 
carries over to the dual code 

Cn(D, G) = {(cl,. . . , CT&> I i: cd(E) = 0; 
i=l 

for all f E L(G)} 
= {(Resp,(w), . . . ,Respn(w)) I w E fl(G - D)}. 

In particular, Co(D, G) also has the structure of a F, [t]- 
module. This is most easily seen by using (II.A.2). The 
automorphism 0 of X also induces an automorphism of the 
dual code, which acts as a cyclic permutation on the entries 
corresponding to each H-orbit in supp (D). 

B. Griibner Bases for F, [t]-modules. 

Applications of symbolic algebraic techniques to problems 
in coding theory have been considered for instance in [ll], 

[12], [14], and [15]. The theory of Grobner bases for poly- 
nomial ideals is one particularly powerful tool in this area, 
and expositions have appeared, for example in [16]-[19]. 
The theory for modules over polynomial rings is completely 
analogous, but perhaps less familiar. As a general reference, 
we suggest [9, ch. 31. For the convenience of the reader, we 
summarize the portions of that theory that are needed here. 
Since we will consider only modules over the one-variable 
polynomial ring F, [t], the algebra simplifies considerably. 
Consider the free module F  = F, [t]‘. A monomial m  in 
F  is an element of the form m = tiej, where 1 5 j 5  T, ej 
is the jth standard basis vector in F, and i 2  0. A monomial 
ordering is a total ordering > on the collection of monomials 
that satisfies tiej > ej for all j and all i > 0, and that is 
compatible with the module structure in the sense that 

ml > m2 * tarn1 > tarn2 

for all i 2  0. 
For modules F  over the one-variable polynomial ring, there 

are just two basic ways to define monomial orders. First, we 
choose an ordering on the ej themselves; this is usually done 
implicitly with the indexing of the standard basis 

el > e2 > .. . > e, . 

Then we can define one ordering by placing more importance 
on the index of the basis vector appearing than on the exponent 
of t. 

(ZZ.B.l) Definition: The position over term (or POT) or- 
dering on F  = F4[tlT is defined by 

tiej >pOT t”ee 

if j < 1, or j = C and i > k. 
A second ordering is obtained if we place more importance 

on the exponent. 
(II.B.2) Dejinition: The term over position (or TOP) or- 

dering on F  = F4[tlT is defined by 

tiej >TOp t”ee 

if i > 5, or i = k and j < C. 
It is also possible to partition the standard basis into 

subsets and define product TOP orderings, etc., but the 
possibilities here are much more restricted than for modules 
over polynomial rings in several variables, because the degree 
ordering on the powers of t is the only monomial ordering on 
the rank-l module F, [t]. 

Once we have chosen a monomial ordering >, each element 
f of F  will have a unique largest or leading term, which we 
will denote by LT, ( f ), or simply LT(f) when no confusion 
as to the ordering intended is possible. Given a submodule 
E C_ F, the set of all leading terms of elements of E generates 
a submodule of F, which we will denote by LT( E). 

(II.B.3) Dejinitions: A Griibner basis for a submodule E c 
F  (with respect to an ordering >) is a set g = {gr, . . . , g8} c 
E such that {LT(gl), . . . , LT(g,)} generates the submodule 
LT(E). Equivalently, D is a Grobner basis for E if the 
leading term of each element of E is a multiple of the 
leading term of one of the g;. The monomials in LT(E) are 
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called the nonstandard monomials for E; the monomials in (II.B.4), any submodule E C F  = FQ[tlT has a POT GrGbner 
the complement of LT(E) are the standard monomials. basis g = {gl,... ,gS} with s 5 T, and where the leading 

As in the case of ideals, a  Grijbner basis for a submodule terms of the gj contain distinct standard basis vectors. We  may 
E & F  is a generating set for E. Grijbner bases exist for order the gj so that their leading terms are listed in decreasing 
every submodule E 2 F. Moreover, Buchberger’s algorithm POT order. Given 
for ideal Griibner bases (see, e.g., [18, ch. 2, sec. 71) extends 
more or less verbatim to this new situation and gives one f = Cfiei 

constructive way to compute Griibner bases for modules. 
For modules over the polynomial ring in one .variable, the 

to compute the POT normal form, we may proceed as follows. 

computation amounts to several polynomial GCD calculations 
If LT(g1) contains el, and 

by the Euclidean algorithm. _ - 
One special feature of modules over F,[t] (something that 

91 = Cgliei 

is definitely not true for modules over polynomial rings in then we begin by dividing 911 into fl 
several variables) is the following uniform bound on the size 
of a GrGbner basis, the direct analog of the fact that all ideals fi = alal + RI 

in F,[t] 

in the ring itself are principal 
(II.B.4) Proposition: Let E 

module F, [t]‘. Then E has 
be any submodule of the free 
a Gkibner basis 4 with the 

property that for each j, j = 1,. . , T, there is at most one 
element of G whose leading monomial is of the form tiej. 
In particular, E has a Griibner basis containing at most T  
elements. 

where RI is zero or has smaller degree than gll. Subtracting 
ulgl + Rlel from f, and moving Rlel into the remainder, we 
obtain the intermediate dividend p, and the partial remainder R 

Proof Consider any Griibner basis B = (91, . . ’ , g,}, 
and assume that among the elements of 6, there are two, gi 
and gk, with LT(g,) = t” ej and LT(gk) = t”ej for the 
same j. W ithout loss of generality, suppose u 5 w. Then 
LT(gk) is a multiple of LT(gi) and the leading terms of 
G’ = G \ bk) g enerate the same submodule of F,[t]’ as 
the leading terms of 8. It follows from the Definitions (II.B.3) 
that 4’ is also a Griibner basis for E with fewer elements than 
8. We  may repeat this argument on g’ as long as there are 
pairs of elements whose leading terms contain the same basis 
vector; eventually we obtain a GrGbner basis, the leading terms 
of whose elements contain distinct ej’s. There are at most T  
remaining elements at this point. n  

(ZZ.B.5) Remark: In the applications we consider, including 
the q; = (do11 - 1) ei as generators to simulate the cyclic 
permutations as in (II.A.6) will imply that the Griibner bases 
contain exactly T  elements. 

Also as in the case of ideals, there is a module normalform 
or division algorithm with respect to a Griibner basis 6, which 
rewrites an arbitrary element f E F  as 

-D 
f = a1g1 + . . . + asgs + f (8) 

where algl + ... + asgs E E, and Tg (the normal form, 
or remainder on division) is a linear combination of standard 
monomials. The normal form is uniquely determined by f, and 
the choice of ordering. Expression (8) is found starting from 
f by repeatedly subtracting multiples of the gi to cancel the 
leading term of the intermediate dividend, or moving leading 
terms which cannot be so canceled into the remainder. The 
formal statement of the general algorithm is exactly the same 
as for ideals (see, e.g., [18, ch. 2, sec. l]), so we will not 
reproduce it here. 

If we use the POT ordering (1I.B. l), the steps in the normal 
form algorithm can be organized as several ordinary one- 
variable polynomial divisions, so we indicate one reasonably 
efficient way to implement the algorithm in this case. By 

P = CCfi - wli)ei 
i=2 

R = Rlel 
(9) 

Note that p contains no el terms, so we may continue and 
divide gj, j 2  2 into p. If at any step there are nonzero 
terms in the intermediate dividend containing a standard basis 
vector that appears in no LT(gj), then we move that whole 
component of the intermediate dividend into the remainder. 

The following proposition gives a more precise statement 
of the resulting POT-normal form algorithm. 

(ZZ.B.6) Proposition: The following algorithm computes the 
POT normal form of f E Fq[tlT with a respect to a Griibner 
basis G as in (II.B.4). As before we write 

f = C fiei 
and 

sj = Cgjiei 

etc., for the component decomposit ions of elements of F4[tlT. 

Input: f, the ordered POT Grijbner basis 6 
Output: ~~,:..,a,, R =TG 
Uses: Quot, Rem procedures for one-variable 

polynomial division 

p:= f;R:=O;j:=l 
For i = 1 to r do 

If LT(gj) contains ei then 
ai := Quot (pi, gj;) 
R; := Rem (pi, gj;) 
p  := p - uigj - Riei 
R := R $ Riei 
j:=j+l 

Else 
a; := 0 
RI= R+pie; 
p I= p - piei. 
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Proof The correctness of the algorithm follows by con- 
sidering the values of p and R after each pass through the 
For loop. For instance, after the completion of the first pass 
through the loop (whether LT(gl) contains ei or not), by the 
one-variable polynomial division algorithm and (9), we have 

f = P + am + R 

p contains no ei terms, and R contains only standard mono- 
mials. Then we apply induction on T  to conclude the proof. 

n  
By way of contrast, the TOP normal form algorithm would 

work degree by degree rather than component by component. 
A reduced Grtibner basis is one for which the leading 

coefficients of all of the basis elements are 1, and the leading 
monomials of each of the g; appear only in that basis element. 
A reduced Grijbner basis can always be computed from a given 
Grobner basis by replacing each basis element by its normal 
form with respect to the others, and adjusting scalars. It may be 
shown that once we choose a monomial ordering each F4[t]- 
module has a unique reduced ‘Griibner basis. In our examples 
in Section JII, we will give reduced Grobner bases. 

C. The Systematic Encoding Algorithm. 
We  return to the setting and the standing assumptions of 

Subsection II-A. By the alternate description (II.A.6) of the 
F, [t]-module structure on the code CL (D, G), we may carry 
out all calculations in the submodule C of F4[tlr generated 
by the r-tuples (hi(t), . . . , h,(t)) as in (4), and the q; = 
(,loii - l)ei. (Recall, T  here is the number of the orbits of 
supp (D) under the action of the group of automorphisms 
generated by a.) As a preprocessing step, a monomial order is 
specified, and a reduced Griibner basis B for C is computed. 
By (II.B.4), LI will contain T  elements. (Note that some of the 
qi may appear as elements of G.) 

(II.C.1) Proposition: Given the Griibner basis 8, the infor- 
mation positions and parity check positions for CL(D, G) are 
determined as follows: 

a) The information positions are the coefficients of the 
nonstandard monomials appearing in the r-tuples con- 
structed from the codewords (hi(t), . . . , h,(t)) as in 
(4). In other words, the information positions are the 
coefficients of the nonstandard monomials of the form 
tee,, where ! 5  ]Oi I- 1; higher powers of t are ignored. 

b) The parity check positions are the standard monomials. 
Proof This follows immediately from the Alternate De- 

scription (II.A.6) of the module structure on CL(L), G), and 
the normal form or division algorithm for modules. In particu- 
lar, the number of nonstandard monomials as in a) will always 
precisely equal the dimension k of the code. n 

Fix some enumeration of the information positions. Perhaps 
the most natural way to do this is to list the nonstandard 
monomials appearing in the (hi(t), . . , h,(t)) as in (4) in 
decreasing order according to the chosen monomial ordering: 
me = tie ej, for e = 1, . . . , Ic = dim (C). Do the same for 
the parity checks. Given h = (hi(t), . . . , h,(t)) as in (4), let 
VC(h) be the vector of coefficients of the terms of h, listed in 
any convenient order. (We might use the POT order, (II.A.l) 

for example, to match the cyclic block (orbit) decomposition 
of the codewords.) We  are now ready to give the systematic 
encoding algorithm for one message word w E Ft. This 
algorithm uses the normal form or division algorithm described 
in (8) as a subroutine. As noted in (II.B.6), if the POT order is 
used, the normal form computation can be organized as several 
ordinary one-variable polynomial divisions. 

(II.C.2) Systematic Encoding Algorithm: 

Input: the Griibner basis 6, w E Ft, {me} 
Output: E(w) E CL(L), G) 
Uses: Normal form algorithm with respect to given 

ordering 

f := 5  Wimi 
i=l 

f := f” (see (8) above) 

E(w) := VC(f - 7). 

Since f is a linear combination of only nonstandard mono- 
mials, and f is a linear combination of only standard mono- 
mials, the symbols from w are not changed in the process of 
computing E(w). By (8), the difference f - f is an element 
of the submodule ??, so it represents a codeword. 

As we mentioned in the Introduction, the amount of in- 
formation that needs to be stored here is generally much 
smaller than the amount needed for a full F,-basis of the 
code CL(D, G). If we use only reduced Grobner bases, then 
each Griibner basis element consists of a  nonstandard leading 
term, and (at most) n - k standard terms, whose coefficients 
constitute the description of the encoder. There are at most 
T  . (n - Ic) of these coefficients. In practice, we frequently 
need even less information, since some parity check positions 
may come before some information positions in the monomial 
order, and hence may not appear in all of the basis elements. 
In addition, some elements of the Grobner basis may be the 
generators qi = (t 1  os 1 - 1) ei, which contain only one nonzero 
standard term. 

When we compare this count with the number of entries 
of the block B in the row-reduced generator matrix in (l), 
we see that we have achieved a more compact systematic 
encoder. Perhaps surprisingly, our method is also comparable 
in efficiency to the matrix-based method described in the 
Introduction. The reductions needed to find the normal form 
7 do not require significantly more arithmetic than the direct 
computation of the full set of parity checks via the row-reduced 
generator matrix (1). To see this note that for w E Ft, in 
computing the matrix product w[lk ] B] directly, we must 
perform k . (n - Ic) multiplications and (k - 1) (n - k) sums. 
On the other hand, reducing 

f := C wimi 
i=l 

to normal form, we need to subtract Ic multiples of Griibner 
basis elements to remove the nonstandard monomials. Each of 
those multiples will be a constant times a monomial times a 
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Griibner basis element, and each Grijbner basis element con- 
tains (at most) n - k nonzero standard coefficients (assuming 
a reduced Grbbner basis). So the total amount of arithmetic 
is roughly the same. 

III. EXAMPLES 

In this section, we will present a series of examples illustrat- 
ing how well our method works on several interesting classes 
of codes. As will be clear, these examples by no means exhaust 
the situations where the method will be useful. 

(III.1) Practical Comment: We  mention that by (II.B.4), the 
greatest reduction in the amount of information needed to 
specify the systematic encoder will be achieved when we 
minimize the number of orbits of supp (D) under the action 
of the subgroup generated by 0. In other words, when several 
choices of D are possible, it will generally pay to use the g 
of maximal order. 

(111.2) Examples: One large class of examples has a com- 
mon pattern. Namely, suppose X is a smooth curve in special 
position, as defined in [15]. In particular, X c P” has 
just one point Q at infinity (which is rational over F,), 
and the affine coordinate functions xi, i = 1, . . . , m  have 
distinct pole orders at Q. (As proved in [15], given a curve 
Y and an F,-rational point on Y, there always is a birational 
isomorphism from Y to a curve in special position, so there 
is no real restriction here.) Suppose in addition that X has a 
monomial automorphism, that is, an automorphism of the form 
c7:xiHCYr~xi, (i=l,... , m) where Q: is a generator of Ff , 
and the T; are integers. Then 0 fixes any divisor of the form 
a&, and permutes the affine F,-rational points of X. Let D be 
the sum of the affine F,-rational points, each with coefficient 
1. By Proposition (II.A.4), any code of the form CL(D, uQ) 
has an F,[t]-module structure, and our approach applies. 

By the results of [15], these codes can also be obtained 
by shortening m-dimensional extended cyclic codes. Extended 
cyclic codes have the structure of F, [tl, . , &]-modules. 
Interestingly enough, in the case of a monomial automor- 
phism, the Fq[t] module-structure guaranteed by (II.A.4) is 
compatible with the F, [tl, . . . , &]-module structure of the 
extended cyclic code in the sense that the multiplication by 
t we have defined is the restriction to the shortened code of 
multiplication by the monomial tilt? . . t’;E” in the extended 
cyclic code. (The ri are the same exponents appearing in the 
automorphism c.) 

As a concrete example, we consider the codes CL(D, uQ) 
on the Hermitian curve X3 over Fg. As in Example (II.A.3), 
we represent Fg as F~[cY]/(Q~ + a - 1) and write each 
nonzero element of the field as a power of a. Under the 
action of the subgroup of Aut (X3) generated by the monomial 
automorphism 0 

0: 
{ 

x I-+ ax 
y H a4y = -y 

the affine Fg-rational points decompose into five orbits. Using 
the orbit decomposition, we can rewrite the codewords of 
CL(D, a&) as 5-tuples of polynomials as in, (4). There will 
be a Grijbner basis for CL(D, a&) as Fg[t]-module with five 
elements in this case. 

We  will derive a complete compact systematic encoder for 
CL(D, 19Q) on this curve. To begin, we note that g(Xy) = 3, 
so that by the Riemann-Roth theorem, the dimension of 
L(19Q) is 19 + I- 3  = 17. No function in L(19Q) vanishes 
at all 27 of the points of D, so n = 27, k = 17 for this code. 
(By [3, sec. VII.4.31, the minimum distance is d = 8.) 

Since x has pole order 3 at Q and y has pole order 4 at 
Q, a basis for L(19Q) g’ 1s lven by the following collection of 
monomial functions: 

{LX,Y,X2,XY>Y2,X3 ,x2Y,xY2>Y3>x3Y,x2Y2,xY3,Y4>~3Y2> 
x2y2, xy3} . 

Using the POT ordering (II.B.l) on Fg[t15, .we compute a 
GrGbner basis for the submodule C of Fg [t15. We  may use 
as generators, for example, the 17 codewords corresponding 
to the rows of any generator matrix for CL(D, 19Q), and 
(t8 - l)ei, i = 1,2,3, (t2 - l)e4, and (t - l)es. We  find 
the following reduced Griibner basis: 
g1 = (1,a6,c&+c&+ a6t3 + a2t2 + at + Q2, a2t + Q, 1) 

g2 = (0,t+n5,t5+ a5t4 + Cy7t3 + a7t + d, cY2t + 2: 1) 

g3 = (O,O, t6 + a6t5 + a2t4 + a7t3 + at2 + Cr4t + a5, 
a”t + a3, cc) 

g4 = (0,0,0,t2 - 1,O) 

g5 = (0,0,0,0,t - 1) 
From this, using (II.C.l) we see that the information positions 
for the code (with respect to the POT ordering) can be taken 
as the coefficients of 

l t7el;..,tel,el 
l t7e2, . , tea 
l t7e3,  Pe3.  

There are 17 of these, which agrees with the dimension k. 
(111.3) Example: We  continue with the Hermitian curve 

X3. By the heuristic of (III.l), the monomial automorphism 
described above is not optimal in this case. Indeed, as we have 
seen in (II.A.3), when m  = 3, the Hermitian curve X3 also 
has a nonmonomial automorphisms of order higher than 8. We  
will consider next the automorphism 

i 
x H a25 T: 
y++y+a2. 

From Example (II.A.3), we recall that the affine Fg-rational 
points of X3 decompose into three orbits under the action of 
r-two of length 12 and one of length 3. 

Using the same basis for L(19Q) given above and the 
POT ordering (II.B.l) on Fg[t13, we compute a GrGbner basis 
for the submodule c of Fg[t13. As before, we may use as 
generators the 17 codewords corresponding to the rows of a 
generator matrix for CL (D, 19Q) (rearranged according to the 
orbits of 7) and (t12 - l)ei, i = 1,2, (t3 - l)e3. 

As we expect by (II.B.4), there are three GrGbner basis 
elements in all: 

g1 = (1, a3t6 + a7t4 + a7t3 + t2 + a% + a, a5t2 + t + a) 
g2 = (0, t7 + a3t6 + a5t5 + Cu4t4 + a4t3 + Cr7t2 + at + 1; 

n2t + 2) 
g3 = (O,O, t3 - 1) (10) 
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From this, using (KC. 1) we see that the information positions 
for the code (with respect to the POT ordering) are the 
coefficients of 

l Pel . . ..tel.el, 

. pe2:. .  . , t7e2.  

Note that there are precisely 17 of them as we expect. The 
remaining ten monomials of the form tee,, where e 5 ]Oi I- 1, 
are the parity check positions. 

For purposes of comparison, here is a reduced TOP 
Griibner basis for the same submodule of Fs[t13, listed with 
leading terms in decreasing TOP order (the leading terms 
are underlined). 

g:= (-t2+ a2t+a7,g+ a7t3+ a6t2 +a7t - 1,a7t+a5) 
g; = (t” + a7t2 + a2t - 1, a7t3 - t2 + a3t, a7t2 + a7t + a) 
g&= (O,O& 1) (11) 

The information and parity check positions are different here 
in (11) than they are for the POT order basis (10) above. 
However, note that there are still 17 information positions-the 
coefficients of 

l t’le l,“‘, t3el, 

l tlle2,. . . , t4e2. 
In general, using the POT ordering will tend to eliminate 

more terms from the leftmost components, leaving the parity 
checks farther to the right, while the TOP ordering would tend 
to spread the parity checks more evenly among the different 
components. 

To illustrate the operations needed for encoding, we apply 
the algorithm (II.C.2) to encode the message word 

w = (t, at8 + t7, 0) 

using the POT Griibner basis in (10) and (II.B.6) (we have 
already converted the string from Fi7 to a 3-tuple of polyno- 
mials). We  begin by subtracting tgl from w to obtain 

w - tg1 = (0, cd + a6t7 + Cr3t5 + a3t4 - t3 + a2t2 + CA, 
at3 - t2 + a5t). 

Now, we divide the leading entry from ga into the second 
component of the right-hand side, yielding a quotient of at+a, 
and a remainder of 

R2e2 z (0, a3t6 + a5t5 + a6t4 + a7t3 - t2 f a3t + Q5, 0). 

Hence 

w - tgl - (cd + o!)gz - R2ez = (O,O, at3 + at2 + Cu5t + a3) 

dividing by gs (or simply “cycling back” to get exponents in 
the range 0, 1,2 in the last component), we obtain 

R3e3 = (O,O, at2 + a5t - 1). 

The normal form is W  = (0, R2, R3), and the corresponding 
codeword is 

w - 75 = (t, cd+ t7 + a7t6+ at5+ Cr2t4 + Cr3t3 + t2 + a7t + a, 
n5t2 + at + 1). 

(111.4) Examples: All of the CL(D, a&) codes on Hermi- 
tian curves P+’ = ym + y over F,z can be systematically 
encoded in a very similar fashion. We  keep the same notation 
used above for X3; in particular D will be the sum of the m3 
affine F,z-rational points of X,. 

Under the action of the automorphism 

1 
x I-+ ax 

0: 
Y-a m+l Y 

the point Q at infinity is fixed, and the points of D are 
permuted. There are precisely m  orbits of length m2 - 1: 
the orbits of the points with both coordinates nonzero. (A 
convenient set of representatives for these orbits are the affine 
F,z-rational points on the line x = 1.) The points with x = 0 
and y # 0 form one further orbit as in (II.A.3). The origin is 
a singleton orbit. This gives a total of m  + 2 orbits. 

By (II.B.4) there is a Grobner basis 4 for the F,z [t]-module 
CL (D, a&) consisting of mf2 elements, and knowing E gives 
a compact representation of the systematic encoder. We  note 
that on these curves, for large m, the interesting long Hermitian 
codes will have n = m3, a will be on the order of m3, and 
k = a + 1 - m(m - 1)/2 will also be on the order of m3. 
The number of parity checks is on the order of m2, so the 
larger we take m, the greater the gain is in compactness of 
representation of the encoder: on the order of m5 coefficients 
in the row-reduced generator matrix for the code, versus on 
the order of m3 coefficients in the Grijbner basis elements. 
In a related paper [lo], we have developed a very efficient 
specialized algorithm for computing these Griibner bases. This 
algorithm uses the special properties of Hermitian curves in 
a decisive way. 

When m is prime, this can be improved slightly. Namely, 
as in (II.C.1) and (111.3), when m  is prime, X, will have a 
nonmonomial automorphism of the form 

7: 
C 

x H Qm-1x 
yHy+ar 

where 

&m-l) zz -1 E $‘,a. 

7 has order m(m + l), and the affine Fm2-rational points of 
X, decompose into m  orbits under the action of r. 

Finally, we note that the Hermitian codes we have consid- 
ered can also be viewed as ideals in the group algebra of a 
certain nonabelian group l? of order m3(m2 - 1)-the full 
subgroup of Aut (Xm) fixing the divisors D and a&. This 
follows since I acts transitively on the points of D. We  have 
not used the full group I? here, only large cyclic subgroups. 
However, the construction of a systematic encoder seems more 
accessible by our approach. 

(111.5) Examples: Another interesting class of curves for 
which our approach applies immediately, and with a monomial 
automorphism as well, are the curves of the form 

xq+x=p(yq+y) (12) 

over the field Fq, where q = 22n+1 for some n 2 1, and 
40 = zn, studied by Hansen and Stichtenoth in [7]. We  will 
write Y, for the projective closure of the curve (12). Y, has 
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just one (singular) point (x, y, 2) = (l,O, 0) at infinity. The 
Y, also have large automorphism groups and large numbers of 
points rational over F,. Indeed, it is easy to see from the form 
of (12) that Y, passes through every point of the affine plane 
over F,, and achieves the maximum number of F,-rational 
points for a curve of its genus g = qo(q - 1) allowed by the 
explicit formulas of Weil (see [7]). We  note that Y, always 
has an automorphism of the form 

{ 
x H o!x 

0: 
Y ++ arlJ (13) 

where QI is a generator of Ff, and T  is chosen to satisfy the 
congruence 

(qo+l)r-lmodq-1 

(Note that 

qo(q - 1) + 1 = 2n(22n+i - 1) + 1 

is always divisible by qo + 1 = 2n + 1, so such T  always exist. ) 
Taking Q to be the point at infinity, and D to be the sum 

of the q2 affine points of Y,, we see that the points of D 
are permuted under a. There are q - 1  orbits of points where 
neither coordinate is zero. The nonzero points with y = 0 
are permuted cyclically giving another orbit. The origin is 
a singleton orbit, and since T  is relatively prime to q - 1, 
the remaining points with x = 0 form one orbit also. Thus 
there are q + 2 orbits in all. Bases for the vector spaces 
L(aQ) can be determined from the results of [7]. (They can be 
expressed as collections of monomials in four variables: x, y 
and two additional functions f and g, whose pole orders at Q, 
together with the orders of x and y, generate the semigroup 
of pole numbers at Q.) By (II.B.4), a  Grijbner basis for the 
F,[t]-module CL (D, uQ) will contain q + 2 elements. 

As in the case of the Hermitian curves considered in (111.3), 
(111.4), the codes CL(D, a&) can also be considered as ideals 
in the group algebra of a nonabelian group. As shown in 
[7, Proposition 3.21, there is a group 5’ consisting of q2 
automorphisms of Y, of the form 

TB,r : 
{ 

x-x+p”y++y 

Y++YI+P 

(p, y E Fq) acting transitively on the q2 F,-rational points 
of Y,. So the CL( D, aQ) codes on Y, are ideals in the group 
algebra F, [S]. However, every element of S has order 4 or 
less, so by (111.1) our choice of automorphism 0 in (13) leads 
to a greater reduction in the amount of information needed to 
specify encoders than any choice of automorphism in S. 

(111.6) Examples: Another very large class of examples 
for which our approach applies are the hyperelliptic curves 
(including those of genus 1, usually known as elliptic curves). 
Codes constructed from elliptic curves in characteristic 2 and 
3 have been studied, for example by Driencourt and Michon 
in [20]. 

For simplicity of notation, we work first over a field of odd 
characteristic. Then a hyperelliptic curve is given by an affine 
equation of the form 

Y2 = f(x) (14) 

where f(x) is a polynomial with distinct roots in the algebraic 
closure of F,. We  restrict to the case where f(x) has odd 
degree d = 2e + 1. Then the curve has genus g = e, and is in 
special position. For e 2 1, the single point Q at infinity is a 
cuspidal singularity. The mapping 

0: 
{ 

x-x 
Y ++ -Y 

is an automorphism of the curve (14), called the hyperelliptic 
involution. In characteristic 2, we have the alternate form 

Y2 + Y = f(x) 

for the equation, and an automorphism 

{ 
x-x 

ff: 
ywy+l. 

Unlike the situation in the previous examples, the full au- 
tomorphism group of many hyperelliptic curves of genus 
g > 1 equals the cyclic group generated by the hyperelliptic 
involution. 

Q is fixed by 0, and the other F,-rational points are 
permuted in orbits of length 1 or 2. Hence, provided that there 
is some F,-rational point not fixed by 0, we may set D to be 
the divisor of affine points on (14), and apply our approach to 
the codes CL(D, a&) constructed from these curves as well. 
(But of course, the savings in the compact systematic encoder 
will not be as drastic as in the previous examples.) 

(ZZZ.77) Examples: Finally, we want to discuss an example 
where the curve has several points at infinity, but where the 
same ideas may be applied. We  will consider the celebrated 
Klein quartic curve K 

x3y + y32 + x3x = 0 

over the field Fg. K is smooth of degree 4, hence has genus 
3. Its full automorphism group is simple of order 168. Codes 
constructed from K have been discussed, for example, by 
Hansen (see [6], and the discussion in [21, sec. 5.7.51). 

We  write 

F8 = F&]/(a” + a + 1). 

As is well known, K has 24 points rational over Fg: the three 
points 

Qo=(l,O,O), Qi=(O,l,O), Qz=(O,O,l) 

and 21 other points P;j obtained by applying the elements of 
the subgroup F  of Aut (K) generated by 

i 

x H QX 
0: Y ++ Q2Y 

z H Q4Z 

and 
X++Y 

7: 
1 

Y+-+Z 
X++X 

to the point POO = (1, a2, a2 + o). Precisely 

pij = Ti(d(POO)) . 
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The points Q; are permuted among themselves by F, and 
the other 21 points form a single F-orbit. Hansen considers 
codes constructed with 

J. H. van Lint, Introduction to Coding Theory. New York: Springer, 
1982. 
H. Stichtenoth, Algebraic Function Fields and Codes. Berlin, Ger- 
many: Springer, 1993. 

and 

G, = m(Qo + &I + Q2) 

D = c Pij. 
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PI 
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Since the points of D form a single orbit under F; the codes 
CL (D, G,) can be considered as ideals in the group algebra 
Fs[F]. Moreover, since the order of F  is relatively prime 
to the characteristic, Fs[F] is a semi-simple algebra, and the 
ideals are principal (generated by idempotent elements). 

181 

However, F  is a nonabelian group of order 21, hence our 
Grobner basis approach would not apply directly. (Grbbner 
bases in a polynomial ring with noncommuting variables 
satisfying the same relation as P and 7 

[91 

1101 

1111  

l77 = ro4 

could be applied.) However, we may also simply restrict our 
attention to the cyclic subgroup generated by 0 (according 
to the heuristic of (111.1); this will be the better choice). 
Under the action of the cyclic groups H = (0) of order 
7, the points of D decompose into three orbits of size 7: 
oi = {Pij 1  j = 0, . . . ,6}. By (II.B.4), for the resulting 
Fa [t]-module structure on CL(D, G,), there will be three 
elements in a Griibner basis. Taking m  = 4, for example, 
we get a code with parameters n = 21, k = 10, d = 9. To 
specify the compact systematic encoder, we need to know the 
3 x 11 coefficients in the Griibner basis elements. As in the 
previous cases, this compares very favorably with the 10 x 11 
coefficients in the row-reduced generator matrix. 
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